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Agenda: ANSEL Mössbauer Experiment 
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Möbbauer (Mössbauer) Spectroscopy with proportional counters:

 Ultra-high-precision photon energy measurement: 
 Precision scanning resonant-absorption spectroscopy  
 with doppler-shifted photon energy, using gas amplification counters.

➢ Gas amplification counters, proportional counters, electronics.

➢ Mössbauer Principles: 

 Resonant g  absorption.

 Recoil effects in g emission and absorption, 

 Recoilless g absorption by macroscopic samples, 

➢ Determination of electric and magnetic HF interactions in various 
chemical Fe compounds

Reading Assignments: 
(Knoll, LN): X ray spectroscopy with proportional counters (PC),

Eg-dependent absorption coefficients, gas amplification counters,

Response of proportional counters to g - and X rays, spurious peaks.



The Mőbbauer Effect

1961 Nobel Prize in Physics.

Discovered (1958) recoilless nuclear fluorescence of 
gamma rays in 191Ir. 

Famous application: proof of red shift of gamma 
radiation in the gravitational field of the earth 
(Robert Pound and Glen Rebka); 
Pound–Rebka experiment was one of the first 
experimental precision tests of Albert Einstein's 
theory of general relativity. 

Long-term importance: 

Use of Mössbauer effect in
”Mössbauer spectroscopy” testing solid-state and 
chemical environments via electric and magnetic 
hyperfine interactions between atomic electrons and 
nuclear charge and magnetization distributions.  
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Rudolf  Mőbbauer



W. Udo Schröder, 2024

M
oe

ss
b
au

e
r

4

Nuclear Resonance Photo Absorption

Absorption of radiation= competition of various interactions between photons 
and microscopic structure (atomic, nuclear) of material → 

 absorbance = sum of statistical probabilities per constituent. 
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Spectroscopy Challenge: Doppler Shifted g Energy 
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g

 n   

R
p E c

g
= −

( )g
n= −

Rf R R
v p h c M

g g
n=p h c

( )

Observer Lab velocity v

red blue shift→

n :sign blue or red shift

( )3 510 10RTypical Lab recoil velocities cm s −

Rf R R

Nuclear recoil

v E M c h M c
g g

n= − = −

v@ 0Riemission vg = @ 0Riabsorption vg 

( )21 2

R
E E E

E E Mc

g g

g g

 = − 

−

Ri R R
v p M=

Emission and absorption of g-rays by nuclei in motion (   thermal lattice vibrations, 
recoil effects due to g emission) → Doppler effect both in emission and absorption. 
→ g emission or absorption energy is different from 
Nominal transition energy hnif = (Ei - Ef) (photon and nuclear recoil) 





Emission/Absorption of g-Rays in Thermal Environment
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Quantum Effect: System absorbs electromagnetic radiation strongly if g energy 
hn equals a system energy level difference:                     . For absorption, 
the lower level (i, k) must be occupied, the other empty. 
          → Use for scanning level scheme {En}

( )ik i kh E En = −

Quantum Effect ➔ Coherent line broadening. 
Normal environment T ≠ 0 → 
Thermal motion of nuclei → Incoherent line broadening.

Velocity distributions of emitters and absorbers lead to broad line shapes, 
wash out resonance requirement, broader with increasing T.
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Recoilless Emission/Absorption
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Z,N
m

Z,N
m

57Emitter Nucleus Fe 57Receiver Nucleus Fe

X X

M M

Momentum-energy transfer to nucleus (mass m) changes effective g 
energy → Loss of resonance condition 

Momentum-energy transfer to nucleus embedded in macro 
crystal lattice is negligible → Resonance condition retained
→ Allows for precision absorption/emission spectroscopy! 

Anchored to macro crystal
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Precision Absorption Spectroscopy
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Mőbbauer Spectroscopy Applications

Precise level energy scan, resolution E ~ 10-10 eV

→ Investigate small perturbations of nuclear level energies due to 
interactions between 

❑  Nuclear charge distributions and electronic density 
distributions in molecules, solid lattices 
→ chemical shifts, electrostatic hyperfine interactions;

❑ Nuclear spins and magnetic moments with external 
magnetic fields, man-made or in lattices 
→spin and g-factor determinations, magnetic hyperfine 

interactions. 
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Isomer (Chemical) Shift of Atomic States
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e er =

rN(r)

R

Coulomb potential for spatially 
extended nucleus → depends on R

Point → finite size→

Finite Size nuclear states
Radii R=Rn  (n=0,1,..)

Perturbation theory calculation of nuclear 
energy level, perturbation = H’ due to 
interaction of r (r) with electrons  (r)

( ) ( ) ( ) =  − =0 interH r V r R V r action

Transmission of g-rays 
through absorber 

depends on source 
velocity 

→ scan with T=T(v)

Nuclear state (n=0,1,..)

Difference 
between 2 states

 nfor r R
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Electric Quadrupole Hyperfine Interaction in Atoms
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Nuclear electric 
quadrupole moment eQ 
measures deviation of 
nucleus from sphere. 
Qeff(I) can be aligned via 
interactions of external 
fields (spin I alignment).

Energy shift depends on 
orientation of Q (i.e., I) with 
respect to crystal field gradient.
Qeff = Q’= 0 for I = 0,1/2

Orientation (I, mI) dependent 
quadrupole shift

q

Electric Field Gradient Vzz

mI



Magnetic Hyperfine Splitting in Atoms
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Nuclear magnetic moment  oriented || to spin I, can be 
aligned w/r to magnetic field B.   gN = gyro-magnetic ratio: 
different for different nuclear states → structure information!   

Orientation 
of spin & 

Nuclear magneton μN = 5.05078324(13)×10−27 J/T

n I n N z
E B m g B  = −  = −

gg

ge

Deexcitation



Ferro-Magnetic HF Interaction
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Ferromagnetic Fe absorber→ observe magnetic HF

ge,g = gyro-magnetic ratios
   N = Bohr Magneton (unit) 

Chemical 
Shift IS
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
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Electric + Magnetic HF Interactions
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Mössbauer velocity absorption spectra are shifted against zero and split

Isomer-shifted Fe hyperfine level scheme and allowed E1 transitions

Chemical
Isomer Shift



Applications in Chemistry/Material Science
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Simulation of chemical reaction in 
Martian (oxygen-free) environment.

Precipitation of Fe in water under 
influence of UV light:

Intense Hg lamp at distance d from 
quartz flask 
with Fe2+ solution d=5cm (A) or 
d=10cm (B) → Factor 4 in UV 
intensity

Moessbauer parameters at liquid- 
nitrogen temperature (77 K) of the 
photooxidized precipitation samples A 
and B, compared to natural FeOOH

→ a-FeOOH precipitates (B has larger 
particles, strong B field at 300K)



Other Möbbauer Cases

57Fe is by far the most common isotope used in Möbbauer experiments.

Isotopes of other elements also frequently studied: 129I, 119Sn, 121Sb
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http://en.wikipedia.org/wiki/Iron-57
http://en.wikipedia.org/wiki/Iodine-129
http://en.wikipedia.org/wiki/Tin-119
http://en.wikipedia.org/wiki/Antimony-121
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The End
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